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Jet noise
• Major source of aviation noise
• Hazard to people working in close proximity
→ Stringent noise regulations
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Jet noise
• Predicting jet noise is challenging

– Acoustic energy <<  Aerodynamic energy

• Understanding physics of turbulence helps to predict noise
– Turbulence is chaotic, but noise is organized!

3(Bres et al. 2012)
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!: polar angle



Acoustic sources
• Acoustic analogy (Statistical description) 

– Lighthill 1952; Ffowcs Williams 1963; Lilley 1974; Goldstein 2003 

– Fine-scale turbulence

• Wavepackets (Dynamical description)
– Mollo-Christensen 1963, 1967

– Non-compact acoustic sources (instability waves)

• Parabolized stability equations (PSE)

• Global mode analysis (Nichols & Lele 2011)

• Resolvent analysis (Schmid & Henningson 2001; Garnaud et al. 2013)

4
(Jordan & Colonius 2013)



Missing sound?
• PSE or linearized Euler equations (LEE)

– Recovers sound generation in supersonic jets 
üSinha et al. 2014

– Breaks down for subsonic jets & supersonic heated jets
üCheung & Lele 2007; Rodriguez et al. 2011; Jordan et al. 2014
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LES/FWH

Steady LEE

Jittering wavepackets

(Jordan et al. 2014)

Mach 0.9 subsonic jet



Wavepacket modeling
• Scaled wavepackets can match spectra at all angles
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(Papamoschou 2011)

Mach 0.9 subsonic jet



Approach
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PSE Input-output analysis

marching 
downstream



Approach: input-output analysis
• Linearized Navier-Stokes equations:

• Wave-like modal decomposition:
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Treat nonlinear terms as 
forcing driving a linear system

(Same as acoustic analogy)

42 = 3 −678 − / )91 #!

:

(McKeon & Sharma 2010)



Approach: input-output analysis
• Singular value decomposition (SVD):

→ How each column of  ! (input vector) is mapped to the corresponding 
column of " (output vector) through #

• SVD of # computed through eigen-decomposition of #$#
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Base flows
• Reynolds-Averaged Navier-Stokes (RANS) solutions

– Ideally expanded, axisymmetric, isothermal turbulent jets

– Modified !−" turbulence model (Thies & Tam 1995)

– #$ =
&'
('
= 0.9 jet at )*+ = 2×100
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Contours of axial velocity normalized by the nozzle exit velocity for a Mj = 0.9 jet

(Full domain: -10 < x/D < 40, 0 < r/D < 25)



Input-output analysis
• Matrices ! and " define input & output domains
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Output

InputNozzle



Acoustic response (supersonic)

12(Jeun, Nichols, & Jovanovic, PoF 2016; AIAA Paper 2016; AIAA Paper 2017)
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Including sub-optimals recovers 
~0.33 dB of “missing” noise

Output modes

1

2 3 4

Mj = 1.5 isothermal jet (m=0)



Input modes
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Mj = 1.5 isothermal jet (m=0)

Mj = 0.9 isothermal jet (m=0)
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(Jeun, Nichols, & Jovanovic, PoF 2016; AIAA Paper 2016; AIAA Paper 2017)



Reconstructed acoustic field

14(Jeun, Nichols, & Jovanovic, PoF 2016; AIAA Paper 2016; AIAA Paper 2017)

High fidelity
simulations

24 modes
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Realistic input forcings
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• Allow forcings only where TKE is active
• ! matrix weights inputs by TKE

log(&'()Mj = 0.9 isothermal jet

(Jeun & Nichols, arXiv:1806.09280, 2018)



Outputs of interest

16(Jeun & Nichols, AIAA Paper 2017; 2018)

FW-H surface at 6D

100D

! = #$~#&$°

Numerical 
domain

Sponge layers

Nozzle

Observers

• ( matrix specifies far-field observers distributed uniformly 
along an arc at a distance of 100 diameters from the nozzle 
exit



Mj = 0.9 isothermal jet (m=0)
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St = 0.59



Mj = 0.9 isothermal jet (m=0)
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St = 0.59
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(Jeun & Nichols, arXiv:1806.09280, 2018)



Optimal acoustic source
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m = 0, St = 0.59

SD

!"

Input mode

Asymmetric
pseudo-Gaussian
(Crighton & Huerre 1990)



Similarity wavepackets
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→ Optimal wavepacket is similar over frequencies (St > 0.5)

~"#$%.'( ~"#$%.')



Similarity wavepackets
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Sub-optimal modes
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• Wavepackets embedded in a soup of turbulent fluctuations
• They may not maintain coherence over large distances
• Instead, “pieces” of the wavepacket appear intermittently

• To model this, we form a matrix whose columns are 
windows of the wavepacket
→ Does SVD of this matrix reproduce sub-optimal modes?



Sub-optimal modes
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n = 2

n = 3

model

→ Sub-optimal modes represent decoherence of the optimal 
forcing

model







Wait a minute…





The optimal mode



Sub-optimal modes



LES for Mj = 0.9 isothermal jet
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!" = 2×10(
50M cells, ⁄*+ , = 414



Far-field spectra
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Input projection (St = 0.59)
Reynolds stress from LES, SPOD (Towne et al. 2018) 

Optimal input forcing
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Spatial spectral content
LES (SPOD)
I/O

• I/O wavenumber is exactly half that of K-H instability
– associated with radiating supersonic tail of wavepacket
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Spatially subharmonic jitter

Wavepacket
Perturbed
wavepacket
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Wei & Freund (2006)

Uncontrolled

Controlled

• Compressible shear layer

→ Acoustically controlled simulation is 11dB quieter



Far-field acoustic spectra
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m = 0

• Input-output analysis shows similar spectra to those 
obtained by the similarity wavepacket model

• But, the spectrum does not broaden with respect to 
frequency at high angles



Higher azimuthal modes
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m = 0 m = 1

m = 2 m = 0, 1, 2



Single observer angle
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(Jeun & Nichols, AIAA Paper 2018)



Optimal input modes (St = 0.59)
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! = 20°, m = 0

! = 40°, m = 0

! = 90°, m = 4

! = 60°, m = 4



Directivity at 100D (m = 0)
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St = 0.59



Dynamic acoustic source modeling
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• Can I/O analysis reproduce forcing statistics that provide 
far-field pressure covariance consistent with high-fidelity 
LES?

• We may design a filter that introduces dynamical 
modifications to the linearized operator (Zare et al. 2018)

Filter Linearized
dynamics

White
noise

Coloured
noise

Far-field
sound

! " #

Modified
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White
noise

!

Far-field
sound
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(Zare, Jeun, Nichols, & Jovanovic, APS DFD 2018)



Reduced-order model
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• To reduce computational effort, a reduced-order model for 
I/O behavior of jet noise is necessary

• Method of snapshots
– Collects snapshots of impulse responses of the direct/adjoint systems 
– Constructs observability/controllability Gramians
– Recovers balanced modes via SVD

! = 90°

! = 20°

R = 100(



Future applications

43

• High-fidelity LES data may be decomposed into acoustic, 
hydrodynamic, and thermal components
– Doak, JSV 1989; Unnikrishnan & Gaitonde, JFM 2016

• Does input modes reproduce the acoustic component of 
the source terms?

!" = $% + %' − )*', ) , $% = 0, ) , %' = 0,
Hydrodynamic

*' = *'. + *'/

Acoutic Thermal



Future applications
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• I/O analysis of complex nozzles
– Effect of complicated upstream turbo-machinery in a real jet engine

(Dahl, Jeun & Nichols, AIAA Paper 2015)



Future applications
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• I/O analysis of complex nozzles

“Chevrons” reduce noise



Future applications
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• Linear instabilities evolving on a time-varying base flow
– Jets controlled by plasma actuators

! = #! $, & + !( $, )

(Samimy, Webb, & Crawley, AIAA J 2018)



Future applications
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• Screeching of twin jets
– High-amplitude tonal components in imperfectly expanded jets
– Coupling of two jet plumes, mode-switching, etc.

Feedback acoustic waves

Shock cell structure
Instability waves

(Tam, ARFM 1995)



Future applications
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• Physics-based reduced-order models by studying:
– Sensitivity of nozzle upstream boundary conditions
– Sensitivity of nozzle exit shape

(Powell 1994) (Barone & Lele 2015)



Summary
• I/O analysis produces optimal and sub-optimal modes

– I/O modes are observed in LES

• Input modes make physical sense
– Optimal input modes are similarity wavepackets
– Sub-optimal modes describe decoherence
– Optimal mode for subsonic jets connected to subharmonic jitter

• I/O analysis recovers frequency/azimuthal mode dependence, leading to 
broadened spectra at high observer angles

• Single observer results reveal wavepackets at all angles

• Sideline noise may be explained by coherent mechanisms 
(Papamoschou 2011, Jordan & Colonius 2013)

• Separation of input sources and output farfield measurements is key
49
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Mj = 0.9 isothermal jet (m=0)
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1 2

Including sub-optimals recovers 
~10.6 dB of “missing” noise

Output
modes
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A small wrinkle…
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Decoherence
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• At low radiation angles, the optimal input mode resembles a 
sub-optimal mode for the full-arc
→ At this angle, jet radiates noise by a decoherence mechanism

! = 20° ! = 40°



Compactness & acoustic efficiency

55

• At high angles, the input mode still recovers wavepackets
– Sideline noise also may be explained by non-compact sources

• Wavepacket envelope appears more compact as radiation 
angle increases
→ Enhances radiative efficiency (Obrist 2009; Serre et al. 2015)

! = 60°, large ka

radiationradiation

! = 90°, small ka

radiationradiation
−$% +$% −$% +$%



Method of snapshots
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• Collects snapshots of impulse responses of the direct / 
adjoint systems

• Constructs observability / controllability Gramians

• Recovers the direct / adjoint balanced modes via SVD

! = #$%&', #$%)',⋯ , #$%+' ∆-,
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FW-H method in time domain

57

• Near-field flow data are projected to far-field sound via the 
FW-H method in time domain

• FW-H method is implemented within I/O analysis framework
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